TensorFlow is a free and open-source software library specifically used for deep learning application development using ANN(Artificial Neural Network) and CNN(Convolutional Neuron Network). It is a symbolic math library, and is also used for machine learning applications.
In machine learning we've been working mainly with vectors (numpy arrays), and a tensor cans
be a vector. Most simply, a tensor is an array-like object, and, as you've seen, an array can hold your matrix, your vector, and really even a scalar.
TensorFlow works by first defining and describing our model in abstract, and then, when we are ready, we make it a reality in the session. The description of the model is what is known as your "Computation Graph" in TensorFlow terms.
There are many approaches to install tensorflow. Open anaconda command prompt and execute the following command:
conda install tensorflow==2.2
Also you can use Google Colab environment. Here I have used Google Colab environment.
There are three basic terminologies such as constant, place holder and variable that I have discussed which is as follows:
#import tensorflow
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
#To know the latest version of tensorflow
print(tf.__version__)
Output: 2.2.0
#Constant in tensorflow
con1=tf.constant(100)
con2=tf.constant(12.34)
con3=tf.constant('Python')
con4=tf.constant(True)
print([con1,con2,con3,con4])
#Create a Session
session=tf.compat.v1.Session()
session.run([con1,con2,con3,con4])
output: [100, 12.34, b'Python', True]
#Addition Operations
result1=tf.constant(200) + tf.constant(300)
result2=tf.constant(10) * tf.constant(20)
session.run([result1,result2])
output: [500, 200]
addition=tf.constant([1,2,3,4,5]) + tf.constant([5,4,3,2,1])
multiplication=tf.constant([1,2,3,4,5]) * tf.constant([5,4,3,2,1])
session.run([addition,multiplication])
output: [array([6, 6, 6, 6, 6], dtype=int32), array([5, 8, 9, 8, 5], dtype=int32)]
str1=tf.constant("SILAN")
str2=tf.constant("Software")
session.run(str1+str2)
Output: b'SILANSoftware'
#Placeholder
a=tf.compat.v1.placeholder(tf.int32)
b=a*2
session.run(b,feed_dict={a:[1,2,3,4,5]})
array([ 2, 4, 6, 8, 10], dtype=int32)
str_name=tf.compat.v1.placeholder(tf.string)
my_name="I am"+str_name
session.run(my_name,feed_dict={str_name:["Sashi","Sneha"]})
output: array([b'I amsashi', b'I amsneha'], dtype=object)
#Variable
var1=tf.compat.v1.Variable([20],tf.int32)
init=tf.compat.v1.global_variables_initializer()
session.run(init)
session.run(var1)
output: array([20], dtype=int32)
y=tf.compat.v1.assign(var1,[25])
session.run(y)
Output: array([25], dtype=int32)
#linear regression model
m=tf.compat.v1.Variable([10],tf.int32)
c=tf.compat.v1.Variable([5],tf.int32)
x=tf.compat.v1.placeholder(tf.int32)
linear_model=m*x+c
init1=tf.compat.v1.global_variables_initializer()
session.run(init1)
session.run(linear_model,feed_dict={x:[1,2,3,4,5]})
Output: array([15, 25, 35, 45, 55], dtype=int32)
Silan Software is one of the India's leading provider of offline & online training for Java, Python, AI (Machine Learning, Deep Learning), Data Science, Software Development & many more emerging Technologies.
We provide Academic Training || Industrial Training || Corporate Training || Internship || Java || Python || AI using Python || Data Science etc