Feature engineering is the pre-processing step of machine learning, which is used to transform raw data into features that can be used for creating a predictive model using Machine learning or statistical Modelling. Feature engineering in machine learning aims to improve the performance of models. In this topic, we will understand the details about feature engineering in Machine learning. But before going into details, let's first understand what features are? And What is the need for feature engineering?
Generally, all machine learning algorithms take input data to generate the output. The input data remains in a tabular form consisting of rows (instances or observations) and columns (variable or attributes), and these attributes are often known as features. For example, an image is an instance in computer vision, but a line in the image could be the feature. Similarly, in NLP, a document can be an observation, and the word count could be the feature. So, we can say a feature is an attribute that impacts a problem or is useful for the problem.
Feature engineering is the pre-processing step of machine learning, which extracts features from raw data. It helps to represent an underlying problem to predictive models in a better way, which as a result, improve the accuracy of the model for unseen data. The predictive model contains predictor variables and an outcome variable, and while the feature engineering process selects the most useful predictor variables for the model.
Since 2016, automated feature engineering is also used in different machine learning software that helps in automatically extracting features from raw data. Feature engineering in ML contains mainly four processes: Feature Creation, Transformations, Feature Extraction, and Feature Selection.
These processes are described as below:
1. Feature Creation: Feature creation is finding the most useful variables to be used in a predictive model. The process is subjective, and it requires human creativity and intervention. The new features are created by mixing existing features using addition, subtraction, and ration, and these new features have great flexibility.
2. Transformations: The transformation step of feature engineering involves adjusting the predictor variable to improve the accuracy and performance of the model. For example, it ensures that the model is flexible to take input of the variety of data; it ensures that all the variables are on the same scale, making the model easier to understand. It improves the model's accuracy and ensures that all the features are within the acceptable range to avoid any computational error.
3. Feature Extraction: Feature extraction is an automated feature engineering process that generates new variables by extracting them from the raw data. The main aim of this step is to reduce the volume of data so that it can be easily used and managed for data modelling. Feature extraction methods include cluster analysis, text analytics, edge detection algorithms, and principal components analysis (PCA).
4. Feature Selection: While developing the machine learning model, only a few variables in the dataset are useful for building the model, and the rest features are either redundant or irrelevant. If we input the dataset with all these redundant and irrelevant features, it may negatively impact and reduce the overall performance and accuracy of the model. Hence it is very important to identify and select the most appropriate features from the data and remove the irrelevant or less important features, which is done with the help of feature selection in machine learning. "Feature selection is a way of selecting the subset of the most relevant features from the original features set by removing the redundant, irrelevant, or noisy features."
Below are some benefits of using feature selection in machine learning:
Silan Software is one of the India's leading provider of offline & online training for Java, Python, AI (Machine Learning, Deep Learning), Data Science, Software Development & many more emerging Technologies.
We provide Academic Training || Industrial Training || Corporate Training || Internship || Java || Python || AI using Python || Data Science etc